Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dibromidobis[2-(dicyclohexylphosphanyl)biphenyl-*kP*]palladium(II)

Chen Xu,^a* Ying-Fei Li,^b Zhi-Qiang Wang,^a Fei-Fei Cen^b and Yu-Qing Zhang^b

^aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luovang 471022, People's Republic of China, and ^bChemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China

Correspondence e-mail: xubohan@163.com

Received 21 September 2008; accepted 24 September 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.014 Å; R factor = 0.066; wR factor = 0.180; data-to-parameter ratio = 15.8.

The title compound, $[PdBr_2(C_{24}H_{31}P)_2]$, has a distorted *trans* square-planar coordination of the Pd atom, which occupies an inversion centre. The most important bond distances include Pd-P of 2.380 (2) Å and Pd-Br of 2.515 (2) Å. Weak intermolecular $\pi - \pi$ interactions between the benzene rings of adjacent molecules [centroid-centroid distance = 3.949 (6) Å] are present via crystallographic inversion centres, resulting in a one-dimensional supramolecular architecture.

Related literature

For related literature, see: Barder et al. (2005); Christmann et al. (2006); Stark & Whitmire (1997); Tomori et al. (2000); Tsuji (1995); Xu et al. (2007).

Experimental

Crystal data

$[PdBr_2(C_{24}H_{31}P)_2]$	$\gamma = 103.713 \ (10)^{\circ}$
$M_r = 967.14$	$V = 1053.9 (15) \text{ Å}^3$
Triclinic, P1	Z = 1
a = 9.817 (8) Å	Mo $K\alpha$ radiation
b = 9.827 (8) Å	$\mu = 2.44 \text{ mm}^{-1}$
c = 11.957 (10) Å	T = 291 (2) K
$\alpha = 91.582 \ (11)^{\circ}$	$0.14 \times 0.10 \times 0.09$
$\beta = 108.822 \ (10)^{\circ}$	

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.723, T_{\max} = 0.803$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.180$ S = 1.103811 reflections

91 (2) K $\times 0.10 \times 0.09 \text{ mm}$

7316 measured reflections 3811 independent reflections 2810 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$

241 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^ \Delta \rho_{\min} = -1.42 \text{ e} \text{ Å}^{-3}$

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003) and SHELXTL.

This work was supported by the Doctoral Foundation of Luoyang Normal University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2114).

References

- Barder, T. E., Walker, S. D., Martinelli, J. R. & Buchwald, S. L. (2005). J. Am. Chem. Soc. 127, 4685-4696.
- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Christmann, U., Pantazis, D. A., Benet-Buchholz, J., McGrady, J. E., Maseras, F. & Vilar, R. (2006). J. Am. Chem. Soc. 128, 6376-6390.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC9700007. Tomori, H., Fox, J. M. & Buchwald, S. L. (2000). J. Org. Chem. 65, 5334-5341.
- Tsuji, J. (1995). Palladium Reagents and Catalysts. Chichester: Wiley.
- Xu, C., Gong, J. F. & Wu, Y. J. (2007). Tetrahedron Lett. 48, 1619-1623.

Acta Cryst. (2008). E64, m1349 [doi:10.1107/S1600536808030845]

Dibromidobis[2-(dicyclohexylphosphanyl)biphenyl-*KP*]palladium(II)

C. Xu, Y.-F. Li, Z.-Q. Wang, F.-F. Cen and Y.-Q. Zhang

Comment

Phosphine complexes of palladium have widely been used as catalysts for various reactions (Tsuji, 1995). These complexes are easily prepared from palladium(II) salts and an excess of phosphine ligands. Among them, monophosphinobiaryl complexes of palladium are one of the most important ones (Barder *et al.*, 2005; Christmann *et al.*, 2006; Xu *et al.*, 2007).

The title complex has crystallographic inversion symmetry C_i (Fig.1). The Pd atom is in a square-planar environment, while the *trans* 2-(Dicyclohexylphosphanyl)biphenyl ligands are in an eclipsed conformation. The dihedral angles of the benzene rings are 60.8 (2)°. The Pd—P [2.380 (2) Å] and Pd—Br [2.515 (5) Å] bond lengths are longer than the related triphenylphosphine complex of palladium [2.336 (2)Å and 2.4169 (13) Å](Stark & Whitmire, 1997) possibly due to the steric bulk of the ligand. Weak intermolecular $\pi \cdots \pi$ interactions between the benzene rings C19 - C24 (Cg4) of inversion related adjacent molecules [centroid-centroid distance Cg4 \cdots Cg4ⁱⁱ is 3.949 (6) Å, the perpendicular distance Cg4 on ring Cg4ⁱⁱ is 3.582 Å, and the slippage is 1.663 Å, symmetry code ii = 1 - *x*, 1 - *y*, 1 - *z*] were calculated for the structure of the title complex with the programme PLATON (Spek, 2003), resulting in a one-dimensional supramolecular architecture.

Experimental

2-(Dicyclohexylphosphanyl) biphenyl was prepared as described in the literature (Tomori *et al.*, 2000). A solution of PdBr₂(PhCN)₂ (1 mmol) and 2-(Dicyclohexylphosphanyl) biphenyl (2 mmol) in dry benzene (5 ml) was stirred for 1 day, removal of solvent resulted in a yellow powder that was recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as yellow crystals suitable for single-crystal X-ray diffraction.

Refinement

H atoms were placed in calculated positions (Csp^2 —H = 0.93 Å, Csp^3 —H = 0.97 -0.98 Å) and refined as riding on their carriers with isotropic displacement parameters $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids of the nonhydrogen atoms drawn at the 30% probability level. Inversion related atoms are labelled with an A.(Symmetry code: 2 - x, 1 - y, 1 - z).

Fig. 2. Partial view of the crystal packing showing the formation of the chain motif of molecules formed by the intermolecular $\pi \cdots \pi$ interactions, extending along the *a* axis.

Dibromidobis[2-(dicyclohexylphosphanyl)biphenyl-kP]palladium(II)

Z = 1
$F_{000} = 496$
$D_{\rm x} = 1.524 {\rm ~Mg~m}^{-3}$
Mo K α radiation $\lambda = 0.71073$ Å
Cell parameters from 1503 reflections
$\theta = 2.4 - 21.7^{\circ}$
$\mu = 2.45 \text{ mm}^{-1}$
T = 291 (2) K
Block, yellow
$0.14\times0.10\times0.09~mm$

Data collection

Bruker SMART APEX CCD diffractometer	3811 independent reflections
Radiation source: fine-focus sealed tube	2810 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.039$
T = 291(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.723, T_{\max} = 0.803$	$k = -11 \rightarrow 11$
7316 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.180$	$w = 1/[\sigma^2(F_0^2) + (0.0609P)^2 + 7.3363P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{max} < 0.001$
3811 reflections	$\Delta \rho_{max} = 0.71 \text{ e } \text{\AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -1.42 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pd1	1.0000	0.5000	0.5000	0.0252 (2)
Br1	0.96825 (13)	0.71510 (13)	0.59715 (10)	0.0612 (4)
P1	0.8353 (2)	0.5540 (2)	0.32229 (17)	0.0267 (5)
C1	0.7959 (9)	0.4354 (9)	0.1852 (7)	0.0306 (18)
H1	0.7703	0.3392	0.2060	0.037*
C2	0.6642 (9)	0.4454 (10)	0.0766 (7)	0.038 (2)
H2A	0.5763	0.4378	0.0990	0.045*
H2B	0.6870	0.5358	0.0468	0.045*
C3	0.6343 (10)	0.3264 (10)	-0.0199 (8)	0.044 (2)
НЗА	0.6021	0.2366	0.0078	0.053*
H3B	0.5546	0.3355	-0.0903	0.053*
C4	0.7702 (10)	0.3287 (10)	-0.0518 (8)	0.045 (2)
H4A	0.7945	0.4131	-0.0893	0.054*
H4B	0.7488	0.2479	-0.1090	0.054*
C5	0.9032 (10)	0.3258 (9)	0.0551 (8)	0.038 (2)
H5A	0.9903	0.3344	0.0315	0.046*
H5B	0.8843	0.2369	0.0879	0.046*
C6	0.9318 (9)	0.4476 (9)	0.1490 (7)	0.0362 (19)
H6A	1.0167	0.4456	0.2180	0.043*
H6B	0.9546	0.5366	0.1171	0.043*
C7	0.9148 (9)	0.7385 (9)	0.2981 (7)	0.0330 (18)
H7	0.9069	0.7981	0.3616	0.040*
C8	0.8334 (10)	0.7900 (9)	0.1839 (8)	0.044 (2)
H8A	0.8407	0.7375	0.1171	0.052*
H8B	0.7288	0.7724	0.1751	0.052*
C9	0.8963 (11)	0.9454 (10)	0.1819 (10)	0.056 (3)
H9A	0.8471	0.9723	0.1048	0.067*

H9B	0.8761	0.9987	0.2415	0.067*
C10	1.0617 (11)	0.9819 (11)	0.2059 (10)	0.057 (3)
H10A	1.0808	0.9410	0.1396	0.068*
H10B	1.0993	1.0835	0.2124	0.068*
C11	1.1426 (10)	0.9292 (10)	0.3177 (10)	0.054 (3)
H11A	1.1345	0.9794	0.3853	0.064*
H11B	1.2474	0.9482	0.3268	0.064*
C12	1.0801 (9)	0.7721 (9)	0.3166 (8)	0.039 (2)
H12A	1.1322	0.7419	0.3914	0.047*
H12B	1.0957	0.7210	0.2531	0.047*
C13	0.6373 (9)	0.2210 (10)	0.3590 (8)	0.043 (2)
H13	0.7063	0.2713	0.4296	0.052*
C14	0.6340 (11)	0.0838 (10)	0.3309 (9)	0.048 (2)
H14	0.7007	0.0422	0.3832	0.058*
C15	0.5362 (12)	0.0082 (11)	0.2291 (10)	0.055 (3)
H15	0.5373	-0.0841	0.2107	0.066*
C16	0.4362 (12)	0.0670 (11)	0.1533 (9)	0.056 (3)
H16	0.3689	0.0148	0.0829	0.067*
C17	0.4337 (10)	0.2035 (10)	0.1801 (8)	0.047 (2)
H17	0.3618	0.2412	0.1292	0.056*
C18	0.5374 (9)	0.2858 (9)	0.2823 (7)	0.0338 (19)
C19	0.5333 (9)	0.4319 (9)	0.3139 (7)	0.0324 (18)
C20	0.4018 (9)	0.4472 (10)	0.3274 (8)	0.043 (2)
H20	0.3219	0.3678	0.3114	0.051*
C21	0.3852 (10)	0.5738 (11)	0.3630 (8)	0.047 (2)
H21	0.2967	0.5795	0.3733	0.056*
C22	0.4983 (11)	0.6902 (11)	0.3831 (8)	0.046 (2)
H22	0.4871	0.7770	0.4056	0.056*
C23	0.6325 (10)	0.6814 (10)	0.3703 (8)	0.040 (2)
H23	0.7104	0.7626	0.3862	0.048*
C24	0.6521 (9)	0.5536 (9)	0.3340 (7)	0.0306 (18)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.0260 (5)	0.0262 (5)	0.0248 (5)	0.0099 (4)	0.0083 (3)	0.0043 (3)
Br1	0.0626 (7)	0.0682 (8)	0.0511 (7)	0.0210 (6)	0.0141 (5)	0.0072 (5)
P1	0.0255 (10)	0.0281 (11)	0.0275 (10)	0.0093 (8)	0.0084 (8)	0.0049 (8)
C1	0.032 (4)	0.035 (5)	0.031 (4)	0.014 (4)	0.014 (3)	0.007 (3)
C2	0.032 (4)	0.046 (5)	0.036 (5)	0.015 (4)	0.007 (4)	0.004 (4)
C3	0.043 (5)	0.054 (6)	0.029 (5)	0.009 (4)	0.007 (4)	0.000 (4)
C4	0.051 (6)	0.045 (6)	0.036 (5)	-0.001 (4)	0.021 (4)	-0.005 (4)
C5	0.047 (5)	0.036 (5)	0.043 (5)	0.015 (4)	0.028 (4)	0.004 (4)
C6	0.038 (5)	0.038 (5)	0.034 (4)	0.012 (4)	0.013 (4)	0.005 (4)
C7	0.032 (4)	0.035 (5)	0.036 (5)	0.014 (4)	0.012 (4)	0.007 (4)
C8	0.040 (5)	0.034 (5)	0.056 (6)	0.010 (4)	0.013 (4)	0.020 (4)
C9	0.047 (6)	0.039 (6)	0.077 (7)	0.012 (5)	0.013 (5)	0.024 (5)
C10	0.056 (6)	0.041 (6)	0.072 (7)	0.007 (5)	0.023 (6)	0.019 (5)

0.033 (5)	0.050 (6)	0.073 (7)	0.002 (4)	0.019 (5)	0.013 (5)
0.031 (4)	0.037 (5)	0.051 (5)	0.010 (4)	0.015 (4)	0.014 (4)
0.031 (5)	0.059 (6)	0.039 (5)	0.016 (4)	0.008 (4)	0.010 (4)
0.052 (6)	0.037 (6)	0.059 (6)	0.020 (5)	0.017 (5)	0.013 (5)
0.059 (6)	0.032 (6)	0.068 (7)	0.005 (5)	0.021 (6)	-0.002 (5)
0.055 (6)	0.046 (6)	0.052 (6)	-0.005 (5)	0.011 (5)	-0.004 (5)
0.037 (5)	0.045 (6)	0.044 (5)	0.001 (4)	0.002 (4)	0.007 (4)
0.030 (4)	0.031 (5)	0.039 (5)	0.003 (3)	0.015 (4)	0.003 (4)
0.029 (4)	0.034 (5)	0.035 (4)	0.010 (3)	0.011 (3)	0.004 (4)
0.027 (4)	0.048 (6)	0.052 (6)	0.010 (4)	0.012 (4)	0.007 (4)
0.030 (5)	0.067 (7)	0.053 (6)	0.023 (5)	0.018 (4)	0.009 (5)
0.055 (6)	0.051 (6)	0.051 (6)	0.034 (5)	0.026 (5)	0.012 (5)
0.038 (5)	0.040 (5)	0.047 (5)	0.015 (4)	0.019 (4)	0.005 (4)
0.033 (4)	0.034 (5)	0.029 (4)	0.014 (4)	0.012 (3)	0.006 (3)
	$\begin{array}{c} 0.033 \ (5) \\ 0.031 \ (4) \\ 0.031 \ (5) \\ 0.052 \ (6) \\ 0.059 \ (6) \\ 0.055 \ (6) \\ 0.037 \ (5) \\ 0.030 \ (4) \\ 0.029 \ (4) \\ 0.027 \ (4) \\ 0.030 \ (5) \\ 0.055 \ (6) \\ 0.038 \ (5) \\ 0.033 \ (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Pd1—P1 ⁱ	2.380 (2)	С9—Н9В	0.9700
Pd1—P1	2.380 (2)	C10-C11	1.495 (14)
Pd1—Br1 ⁱ	2.515 (2)	C10—H10A	0.9700
Pd1—Br1	2.515 (2)	C10—H10B	0.9700
P1—C24	1.848 (8)	C11—C12	1.518 (13)
P1—C1	1.862 (8)	C11—H11A	0.9700
P1—C7	1.866 (8)	C11—H11B	0.9700
C1—C6	1.510 (11)	C12—H12A	0.9700
C1—C2	1.533 (11)	C12—H12B	0.9700
С1—Н1	0.9800	C13—C14	1.371 (13)
C2—C3	1.527 (12)	C13—C18	1.398 (12)
C2—H2A	0.9700	С13—Н13	0.9300
C2—H2B	0.9700	C14—C15	1.347 (14)
C3—C4	1.496 (12)	C14—H14	0.9300
С3—НЗА	0.9700	C15—C16	1.358 (14)
С3—Н3В	0.9700	С15—Н15	0.9300
C4—C5	1.511 (12)	C16—C17	1.378 (14)
C4—H4A	0.9700	С16—Н16	0.9300
C4—H4B	0.9700	C17—C18	1.391 (12)
C5—C6	1.527 (11)	С17—Н17	0.9300
С5—Н5А	0.9700	C18—C19	1.488 (12)
С5—Н5В	0.9700	C19—C20	1.393 (11)
С6—Н6А	0.9700	C19—C24	1.410 (11)
С6—Н6В	0.9700	C20—C21	1.367 (13)
С7—С8	1.512 (11)	C20—H20	0.9300
C7—C12	1.518 (11)	C21—C22	1.345 (14)
С7—Н7	0.9800	C21—H21	0.9300
C8—C9	1.509 (12)	C22—C23	1.396 (12)
C8—H8A	0.9700	C22—H22	0.9300
C8—H8B	0.9700	C23—C24	1.394 (12)
C9—C10	1.505 (14)	С23—Н23	0.9300
С9—Н9А	0.9700		

P1 ⁱ —Pd1—P1	180.0	С10—С9—С8	111.9 (8)
P1 ⁱ —Pd1—Br1 ⁱ	85.15 (7)	С10—С9—Н9А	109.2
P1—Pd1—Br1 ⁱ	94.85 (7)	С8—С9—Н9А	109.2
P1 ⁱ —Pd1—Br1	94.85 (7)	С10—С9—Н9В	109.2
P1—Pd1—Br1	85.15 (7)	С8—С9—Н9В	109.2
Br1 ⁱ —Pd1—Br1	180.000 (2)	Н9А—С9—Н9В	107.9
C24—P1—C1	106.1 (4)	C11—C10—C9	111.8 (8)
C24—P1—C7	104.9 (4)	C11—C10—H10A	109.2
C1—P1—C7	108.6 (4)	C9—C10—H10A	109.2
C24—P1—Pd1	112.3 (3)	C11—C10—H10B	109.2
C1—P1—Pd1	115.8 (3)	С9—С10—Н10В	109.2
C7—P1—Pd1	108.5 (3)	H10A—C10—H10B	107.9
C6—C1—C2	109.2 (7)	C10-C11-C12	111.6 (8)
C6—C1—P1	112.5 (6)	C10-C11-H11A	109.3
C2—C1—P1	116.7 (5)	C12—C11—H11A	109.3
С6—С1—Н1	105.9	C10-C11-H11B	109.3
С2—С1—Н1	105.9	C12—C11—H11B	109.3
P1—C1—H1	105.9	H11A—C11—H11B	108.0
C3—C2—C1	109.1 (7)	C11—C12—C7	110.5 (7)
С3—С2—Н2А	109.9	C11—C12—H12A	109.6
C1—C2—H2A	109.9	C7—C12—H12A	109.6
С3—С2—Н2В	109.9	C11—C12—H12B	109.6
C1—C2—H2B	109.9	C7—C12—H12B	109.6
H2A—C2—H2B	108.3	H12A—C12—H12B	108.1
C4—C3—C2	111.7 (7)	C14—C13—C18	120.4 (9)
С4—С3—Н3А	109.3	C14—C13—H13	119.8
С2—С3—НЗА	109.3	C18—C13—H13	119.8
С4—С3—Н3В	109.3	C15-C14-C13	121.4 (9)
С2—С3—Н3В	109.3	C15—C14—H14	119.3
НЗА—СЗ—НЗВ	107.9	C13—C14—H14	119.3
C3—C4—C5	112.5 (7)	C14—C15—C16	119.8 (10)
C3—C4—H4A	109.1	C14—C15—H15	120.1
C5—C4—H4A	109.1	C16—C15—H15	120.1
C3—C4—H4B	109.1	C15-C16-C17	120.4 (10)
C5—C4—H4B	109.1	C15—C16—H16	119.8
H4A—C4—H4B	107.8	C17—C16—H16	119.8
C4—C5—C6	109.5 (7)	C16—C17—C18	120.9 (9)
С4—С5—Н5А	109.8	С16—С17—Н17	119.6
С6—С5—Н5А	109.8	C18—C17—H17	119.6
C4—C5—H5B	109.8	C17—C18—C13	117.0 (8)
С6—С5—Н5В	109.8	C17—C18—C19	121.4 (8)
H5A—C5—H5B	108.2	C13—C18—C19	121.4 (8)
C1—C6—C5	110.0 (7)	C20—C19—C24	118.2 (8)
С1—С6—Н6А	109.7	C20—C19—C18	116.4 (7)
С5—С6—Н6А	109.7	C24—C19—C18	125.4 (7)
C1—C6—H6B	109.7	C21—C20—C19	122.8 (9)
С5—С6—Н6В	109.7	C21—C20—H20	118.6
H6A—C6—H6B	108.2	C19—C20—H20	118.6

C8—C7—C12	109.9 (7)	C22—C21—C20	119.2 (8)
C8—C7—P1	117.0 (6)	C22—C21—H21	120.4
C12—C7—P1	113.5 (5)	C20—C21—H21	120.4
С8—С7—Н7	105.1	C21—C22—C23	120.5 (9)
С12—С7—Н7	105.1	C21—C22—H22	119.8
Р1—С7—Н7	105.1	С23—С22—Н22	119.8
C9—C8—C7	111.9 (8)	C24—C23—C22	121.3 (9)
С9—С8—Н8А	109.2	С24—С23—Н23	119.3
С7—С8—Н8А	109.2	С22—С23—Н23	119.3
С9—С8—Н8В	109.2	C23—C24—C19	117.9 (7)
С7—С8—Н8В	109.2	C23—C24—P1	117.6 (6)
H8A—C8—H8B	107.9	C19—C24—P1	124.5 (6)
P1 ⁱ —Pd1—P1—C24	103 (35)	C9-C10-C11-C12	54.5 (12)
Br1 ⁱ —Pd1—P1—C24	120.1 (3)	C10-C11-C12-C7	-57.0 (11)
Br1—Pd1—P1—C24	-59.9 (3)	C8—C7—C12—C11	57.1 (10)
P1 ⁱ —Pd1—P1—C1	-20 (33)	P1—C7—C12—C11	-169.7 (7)
Br1 ⁱ —Pd1—P1—C1	-2.1 (3)	C18—C13—C14—C15	0.5 (15)
Br1—Pd1—P1—C1	177.9 (3)	C13—C14—C15—C16	-1.5 (16)
P1 ⁱ —Pd1—P1—C7	-142 (33)	C14—C15—C16—C17	-0.2 (16)
Br1 ⁱ —Pd1—P1—C7	-124.4 (3)	C15—C16—C17—C18	2.9 (15)
Br1—Pd1—P1—C7	55.6 (3)	C16-C17-C18-C13	-3.7 (14)
C24—P1—C1—C6	168.1 (6)	C16-C17-C18-C19	-178.3 (9)
C7—P1—C1—C6	55.8 (6)	C14—C13—C18—C17	2.1 (13)
Pd1—P1—C1—C6	-66.5 (6)	C14—C13—C18—C19	176.6 (8)
C24—P1—C1—C2	40.7 (7)	C17—C18—C19—C20	57.9 (11)
C7—P1—C1—C2	-71.6 (7)	C13—C18—C19—C20	-116.4 (9)
Pd1—P1—C1—C2	166.1 (5)	C17—C18—C19—C24	-123.8 (9)
C6—C1—C2—C3	59.6 (9)	C13-C18-C19-C24	61.9 (12)
P1-C1-C2-C3	-171.5 (6)	C24—C19—C20—C21	-2.3 (13)
C1—C2—C3—C4	-55.9 (10)	C18—C19—C20—C21	176.1 (8)
C2—C3—C4—C5	54.7 (11)	C19—C20—C21—C22	1.9 (14)
C3—C4—C5—C6	-55.3 (10)	C20-C21-C22-C23	-1.4 (14)
C2—C1—C6—C5	-61.9 (9)	C21—C22—C23—C24	1.5 (14)
P1-C1-C6-C5	166.9 (6)	C22—C23—C24—C19	-1.8 (12)
C4—C5—C6—C1	58.9 (9)	C22—C23—C24—P1	-179.1 (7)
C24—P1—C7—C8	-64.7 (7)	C20-C19-C24-C23	2.2 (12)
C1—P1—C7—C8	48.4 (7)	C18—C19—C24—C23	-176.0 (8)
Pd1—P1—C7—C8	175.1 (6)	C20-C19-C24-P1	179.2 (6)
C24—P1—C7—C12	165.6 (6)	C18—C19—C24—P1	1.0 (12)
C1—P1—C7—C12	-81.3 (7)	C1—P1—C24—C23	-139.6 (6)
Pd1—P1—C7—C12	45.3 (7)	C7—P1—C24—C23	-24.7 (7)
C12—C7—C8—C9	-56.0 (10)	Pd1—P1—C24—C23	93.0 (6)
P1C7C8C9	172.6 (7)	C1—P1—C24—C19	43.4 (8)
C7—C8—C9—C10	54.0 (12)	C7—P1—C24—C19	158.3 (7)
C8—C9—C10—C11	-52.8 (13)	Pd1—P1—C24—C19	-84.1 (7)
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$.			

Fig. 1

Fig. 2